Applications of Quadratic Equations

Punted Football The height of a punted football can be modeled with the quadratic equation $\boldsymbol{h}=-\mathbf{0 . 0 1 x ^ { 2 }}+\mathbf{1 . 1 8 x + 2}$. The horizontal distance in feet from the point of impact with the kicker's foot is \mathbf{x}, and the height of the ball in feet is \boldsymbol{h}.
a. Find the vertex of the graph of the function.
b. What is the maximum height of the punt?
c. The nearest defensive player is 5 ft horizontally from the point of impact.

How high must the player reach to block the punt?

Physics The equation for the motion of a projectile fired straight up at an initial velocity of $64 \mathrm{ft} / \mathrm{s}$ is $\boldsymbol{h}=\mathbf{6 4 t} \mathbf{- 1 6 \mathbf { t } ^ { 2 }}$ where \boldsymbol{t} is the time in seconds and \boldsymbol{h} is the height in feet. Find the time the projectile needs to reach its maximum height. How high will it go?

