Practice C

For use with pages 437-444

Solve the equation. Check for extraneous solutions.

1.
$$3(x-1)^{2/3}+4=52$$

4.
$$\frac{1}{2}(3x-1)^{3/4}-3=1$$

2.
$$2(x+4)^{1/3}+7=-9$$

5.
$$\frac{1}{3}(2x+3)^{3/2}+2=-7$$

3.
$$-(2x+3)^{2/3}+5=1$$

6.
$$\frac{1}{3}(2x+3)^{3/2}-2=7$$

Solve the equation. Check for extraneous solutions.

7.
$$3\sqrt{\frac{1}{2}x-5}+1=7$$

10.
$$\sqrt{x^2+3}-5=4$$

8.
$$4 - \sqrt{3x + 1} = 5$$

11.
$$2\sqrt{x^2-1}+4=10$$

9.
$$\frac{1}{5}\sqrt[3]{2x-\frac{1}{2}}+3=6$$

12.
$$3\sqrt[3]{1-x^2}+1=-8$$

Solve the equation. Check for extraneous solutions.

13.
$$\sqrt[5]{3x+7} = \sqrt[5]{2x+1}$$

14.
$$\sqrt{\frac{2}{3} + x} = -\sqrt{2}$$

13.
$$\sqrt[5]{3x+7} = \sqrt[5]{2x+1}$$
 14. $\sqrt{\frac{2}{3}+x} = -\sqrt{2x+\frac{1}{3}}$ **16.** $\sqrt{3x^2-12x+10} = 2x-5$ **17.** $\sqrt[4]{2x^2-1} = x$

17.
$$\sqrt[4]{2x^2 - 1} = x$$

19.
$$\sqrt[3]{2x^2 + 14} = x - 1$$

20.
$$\sqrt[5]{4x^3 + x^2 - 4} = x$$

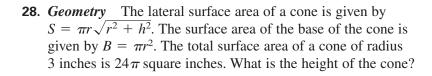
15.
$$\sqrt{x-7} = x-7$$

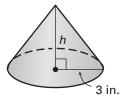
18.
$$\sqrt[3]{9x+19} = x+1$$

21.
$$-\sqrt{x-3} = x-5$$

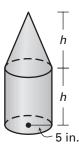
Solve the equation. Check for extraneous solutions.

22.
$$\sqrt{x+3} = 4 - \sqrt{x}$$


23.
$$\sqrt{x-5} = 2 + \sqrt{x}$$


25.
$$\sqrt{5x+1} = 3 - \sqrt{5x}$$

26.
$$\sqrt{2x+1} = 1 + \sqrt{2x}$$


24.
$$\sqrt{x-5} = 2 - \sqrt{x}$$

27.
$$\sqrt{2x+3} = 1 + \sqrt{x+1}$$

29. Geometry A container is to be made in the shape of a cylinder with a conical top. The lateral surface areas of the cylinder and cone are $S_1 = 2\pi rh$ and $S_2 = 2\pi r\sqrt{r^2 + h^2}$. The surface area of the base of the container is $B = \pi r^2$. The height of the cylinder and cone are equal. The radius of the container is 5 inches and its total surface area is 275π square inches. Find the total height of the container.

