Name \qquad Date \qquad

Practice with Examples
 For use with pages 291-298

GOAL Solve quadratic equations using the quadratic formula

Vocabulary

The quadratic formula,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

is used to find the solutions of the quadratic equation $a x^{2}+b x+c=0$, when $a \neq 0$.
The expression $b^{2}-4 a c$, where a, b, and c are coefficients of the quadratic equation $a x^{2}+b x+c=0$, is called the discriminant.
If $b^{2}-4 a c>0$, then the equation has two real solutions.
If $b^{2}-4 a c=0$, then the equation has one real solution.
If $b^{2}-4 a c<0$, then the equation has two imaginary solutions.

EXAMPLE 1 Solving a Quadratic Equation with Two Real Solutions

Solve $-8 x^{2}-5 x=-x^{2}-1$.

Solution

$$
\begin{array}{rlrl}
-8 x^{2}-5 x & =-x^{2}-1 & & \text { Write original equation. } \\
-7 x^{2}-5 x+1 & =0 & & \text { Write in standard form. } \\
x & =\frac{5 \pm \sqrt{(-5)^{2}-4(-7)(1)}}{2(-7)} & & \text { Quadratic formula with } a=-7, \\
x & =\frac{5 \pm \sqrt{53}}{-14} & & b=-5, \text { and } c=1 . \\
& & \text { Simplify. }
\end{array}
$$

The solutions are

$$
x=\frac{5+\sqrt{53}}{-14} \approx-0.88 \text { and } x=\frac{5-\sqrt{53}}{-14} \approx 0.16
$$

Exercises for Example 1

Use the quadratic formula to solve the equation.

1. $x^{2}-9 x+5=0$
2. $5 x^{2}+3 x-1=0$
3. $-x^{2}+2 x+4=0$
\qquad

Practice with Examples

For use with pages 291-298

EXAMPLE 2 Solving a Quadratic Equation with One Real Solution

Solve $2 x^{2}-5 x+7=x^{2}-3 x+6$.

Solution

$$
\begin{aligned}
2 x^{2}-5 x+7 & =x^{2}-3 x+6 & & \text { Write original equation. } \\
x^{2}-2 x+1 & =0 & & \text { Write in standard form. } \\
x & =\frac{2 \pm \sqrt{(-2)^{2}-4(1)(1)}}{2(1)} & & \text { Quadratic formula with } a=1, \\
x & =\frac{2 \pm \sqrt{0}}{2} & & \text { Simplify. } \\
x & =1 & & \text { Simplify. }
\end{aligned}
$$

The solution is 1 .

Exercises for Example 2

Use the quadratic formula to solve the equation.
4. $x^{2}-6 x+9=0$
5. $x^{2}+4 x+4=0$
6. $x^{2}+10 x+25=0$
\qquad

Practice with Examples

For use with pages 291-298

EXAMPLE 3 Solving a Quadratic Equation with Two Imaginary Solutions

Solve $3 x^{2}-3 x+5=0$.

Solution

$$
\begin{aligned}
3 x^{2}-3 x+5 & =0 \\
x & =\frac{3 \pm \sqrt{(-3)^{2}-4(3)(5)}}{2(3)} \\
x & =\frac{3 \pm \sqrt{-51}}{6} \\
x & =\frac{3 \pm i \sqrt{51}}{6}
\end{aligned}
$$

Write original equation.
Quadratic formula with $a=3$, $b=-3$, and $c=5$.

Simplify.

Write using the imaginary unit i.
The solutions are $\frac{1}{2}+\frac{\sqrt{51}}{6} i$ and $\frac{1}{2}-\frac{\sqrt{51}}{6} i$.

Exercises for Example 3

Use the quadratic formula to solve the equation.
7. $x^{2}-6 x=-10$
8. $x^{2}=-x-1$
9. $x^{2}-2 x+3=0$

